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Abstract. This paper provides a state-of-art account on flood vulnerability indices, highlighting worldwide trends and future 

research directions. A total of 95 peer-reviewed articles published between 2002-2019 were systematically analyzed. An 

exponential rise in research effort is demonstrated, with 80% of the articles being published since 2015. The majority of these 

studies (62.1%) focused on the neighborhood followed by the city scale (14.7%). Min-max normalization (30.5%), equal 10 

weighting (24.2%), and linear aggregation (80.0%) were the most common methods. With regard to the indicators used, a 

focus was given to socio-economic aspects (e.g. population density, illiteracy rate, gender), whilst components associated with 

the citizen’s coping and adaptive capacity were slightly covered. Gaps in current research include a lack of sensitivity and 

uncertainty analyzes (present in only 9.5% and 3.2% of papers, respectively); inadequate or inexistent validation of the results 

(present in 13.7% of the studies); lack of transparency regarding the rationale for weighting and indicator selection; and use of 15 

static approaches, disregarding temporal dynamics. We discuss the challenges associated with these findings for the assessment 

of flood vulnerability and provide a research agenda for attending to these gaps. 

1 Introduction 

Floods affect billions of people worldwide (Zarekarizi et al., 2020). Indeed, according to the Emergency Events Database 

(CRED, 2019), around 50,000 people died and approximately 10% of the world population was affected by floods between 20 

2009 and 2019. Due to population growth and climate change, more frequent and widespread floods are anticipated (Hirsch 

and Archfield, 2015; Leung et al., 2019). Therefore, flood risk management is required for mitigating potential damages. 

Nowadays there is a consensus that risk (i.e. the potential for adverse impacts), is not driven solely by natural hazards (e.g. 

floods, droughts), but depends on the interactions between hazards, exposure, and vulnerability (IPCC, 2012, 2014). In this 

regard, vulnerability plays an important, yet still neglected, role in flood risk assessment. Based on it, the social, economic, 25 

physical, cultural, environmental and institutional dimensions of a system exposed to natural hazards are taken into account 

(Birkmann et al., 2013). Due to its importance, the need to understand and assess flood vulnerability has been highlighted by 

international initiatives such as the Sendai Framework for Disaster Risk Reduction 2015–2030 (UNISDR 2015). 
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In response to this, numerous studies have been undertaken to better understand flood vulnerability. Nevertheless, both the 

terminology and methodology used in these assessments are still a subject of discussion (Aroca-Jiménez et al., 2020). In fact, 30 

some consider vulnerability as a function of exposure and susceptibility (Balica et al., 2009; IPCC, 2001; Turner et al., 2003; 

UNDP, 2014), while others separate these concepts (Dilley et al., 2005; Fedeski and Gwilliam, 2007), as it is possible to be 

exposed to a hazard and not to be vulnerable. For instance, a person may live in an area prone to natural hazards, but have 

sufficient alternatives to modify the structure of his house to prevent potential losses (Cardona et al., 2012). Here, we consider 

vulnerability as the physical, social, economic, and environmental conditions and coping capacities, which increase the 35 

susceptibility of the exposed elements to the impact of hazards (UNISDR, 2009). Exposure, on the other hand, is defined as a 

situation where people, infrastructure, housing, industrial facilities, and other human resources are located in hazard-prone 

areas (UNISDR, 2016). 

A wide range of approaches exists for assessing flood vulnerability. The most commonly used methods are: stage-damage 

functions (Papathoma-Köhle et al., 2012, 2017; Tarbotton et al., 2015); damage matrices (Bründl et al., 2009; Papathoma-40 

Köhle et al., 2017); and vulnerability indices (Birkmann, 2006; de Brito et al., 2017; Kappes et al., 2012; Moreira et al., 2021). 

The first two methods assess only the physical vulnerability, neglecting the social vulnerability of their inhabitants (Koks et 

al., 2015). However, the capacity of households to cope, adapt and respond to hazards is equally important to assess the 

potential impacts of floods (de Brito et al., 2018). Therefore, given the importance of holistic studies on vulnerability to ensure 

better representation of reality, the use of vulnerability indices is recommended (Balica et al., 2013; Birkmann et al., 2013; 45 

Fuchs et al., 2011; Nasiri et al., 2016). Indices serve as a summary of complex and multidimensional issues to assist decision-

makers, to facilitate the interpretation of a phenomenon, to increase public interest through a summary of the results. Flood 

vulnerability indices are, therefore, a tool to measure the vulnerability degree throughout the aggregation of several indicators 

or variables. Despite their advantages, indices can present misleading messages if they are poorly constructed or 

misinterpreted. Hence, a clear understanding of the normalization, weighting and aggregation methods used to build an index 50 

is required (Moreira et al., 2021). 

Over the past years, a number of review articles about flood vulnerability have been published. For instance, Rufat et al. (2015) 

reviewed 67 articles to identify the leading drivers of social vulnerability to floods. Nasiri et al. (2016) compared several 

methods, including damage-curves, computer modeling and indicators to evaluate flood vulnerability. Similarly, Rehman et 

al. (2019) and Fatemi et al. (2017) reviewed different methodologies used for assessing flood vulnerability. Jurgilevich et al. 55 

(2017) systematically reviewed 42 climate risk and vulnerability assessments. More recently, Diaz-Sarachaga and Jato-Espino 

(2020) evaluated 72 articles related to the appraisal of vulnerability to different types of hazards in urban areas. 

Notwithstanding these advances, to the best of our knowledge, no study has conducted a systematic review of flood 

vulnerability indices with a focus on the different stages involved in the construction of flood vulnerability indices. The 

investigation of the methods used for normalizing, weighting, aggregation and validation and the implications for each choice 60 

for vulnerability assessment has received little attention so far. In addition, the temporal dynamics of flood vulnerability has 

not been tackled by the existing reviews. This is particularly important given that certain adaptation policies and strategies 

https://doi.org/10.5194/nhess-2021-34
Preprint. Discussion started: 29 January 2021
c© Author(s) 2021. CC BY 4.0 License.



3 

 

may reduce short-term risk probability, but increase long-term vulnerability and exposure (Cardona et al., 2012). Therefore, a 

better understanding of the methods used in each step of the index construction, temporal dynamics (e.g., pre and post-event 

flood indicators), the uncertainty involved and validation is needed for advancing research on flood vulnerability assessment. 65 

Considering the aforementioned gaps and given the proliferation of methods for building vulnerability indices, it is pertinent 

to review the development of this field. Hence, here, we carried out a systematic literature review of indices used to assess 

flood vulnerability. A focus is given to urban and riverine floods. The following questions guided the analysis: (1) Which 

spatial scale was considered? (2) Which indicators were most commonly used to measure flood vulnerability? (3) How were 

the temporal dynamics of vulnerability addressed (e.g. pre or post-flood event)? (4) Which methods were most commonly 70 

applied in each stage of the index building process (i.e. normalization, weighting, aggregation)? (5) To which extent did these 

studies conduct validation and apply uncertainty and sensitivity analysis? In addition to highlighting existing challenges, we 

also point out directions for further research. 

2 Overview of indicators and indices 

In general, indicators consist of various pieces of data capable of synthesizing the characteristics of a system. When these 75 

indicators are aggregated they are called index or composite indicator (Saisana and Tarantola, 2002). Overall, the construction 

of an index comprehends 7 steps (Fig. 1). First, the phenomenon to be measured is defined, so that the index results can provide 

a clear understanding of this phenomenon (Nardo et al., 2008). Then, the indicators used to measure the phenomenon are 

selected. This should be done carefully as the results reflect the quality of the selected indicators. 

 80 

 

Fig. 1 Overview of the different steps involved in constructing an index. 

In the third step, the relationships between the selected indicators are identified. Indicators with similar characteristics can be 

grouped aiming to reduce the number of variables. To this end, statistical analysis (e.g. principal component analysis - PCA) 

or expert knowledge can be used to decide whether the indicators are sufficient or appropriate to describe the phenomenon 85 

(Nardo et al., 2008). After selecting the indicators, they need to be normalized to a common scale before being aggregated into 

an index as they usually have different units of measurement (see Table 1 for the main normalization methods). By doing so, 

problems with outliers can also be reduced (Jacobs et al., 2004).  

 

Table 1 Characteristics of the main normalization methods used for building indices. 90 

Method Equation Description Reference 
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Ranking yin = Rank(xin) 
Based on ordinal variables that can be turned into quantitative 

variables. 

Carlier et al. 

(2018) 

Z-scores yin =
xin − x̅in
σx̅in

 
Converts all indicators to a common scale with a mean of 

zero and a standard deviation of one. 
Gerrard (2018) 

Min-Max yin =
xin −min(xin)

max(xin) − min(xin)
 

Rescales values between 0 (worst rank) and 1 (best rank). It 

subtracts the minimum value and divides it by the range of 

the maximum value subtracted by the minimum value. 

Jha and 

Gundimeda 

(2019) 

Distance from 

the group 

leader 

yin =
xin

max(xin)
 Rescales values between 0 and 1. It is defined as the ratio of 

the value of the indicator to its maximum value. 

Munyai et al. 

(2019) 

Division by 

total 
yin =

xin
∑(xin)

 It is defined as the ratio of the value of the indicator to the 

total value for the indicator 

Jamshed et al. 

(2019) 

Categorical 

scale 
yin =

{
  
 

  
 

0 if xin < P
15

20 if P15 ≤ xin < P
25

40 if P25 ≤ xin < P
65

60 if P65 ≤ xin < P
85

80 if P85 ≤ xin < P
95

100 if xin ≤ xqc
t

 
Assign a value for each numeric or qualitative indicator. 

Values are based on percentage. 

 

Andrade and 

Szlafsztein 

(2018) 

Binary 

standard 
None 

It is calculated using simple Boolean 0 and 1 (false and true) 

values. 

Garbutt et al. 

(2015) 

Note: y is the transformed variable of x for indicator i for unit n. Piis the i-th percentile of the distribution of the indicator xin, and pan 

arbitrary threshold around the mean. 

 

The fifth step comprises the weighting and aggregation of the indicators. Weights can be assigned to indicators to demonstrate 

their importance in relation to the studied phenomenon (see Table 2 for the main weighting methods). Given that it may be 95 

difficult to find an acceptable weighting scheme, equal weights are often used, which implies that all criteria are “worth” the 

same (de Brito et al., 2018). Alternatively, an equal weighting scheme could be a result of a lack of knowledge about the 

indicators’ importance. After the indicators are weighted, they are aggregated. The most common aggregation methods are 

linear and geometric. The linear method consists of the weighted and normalized sum of indicators whereas the geometric 

aggregation represents the output of the indicators whose exponent is their assigned weight (Nardo et al., 2008). 100 

 

Table 2 Characteristics of the main weighting methods used for building indices. 

Type Method Description Reference 

- Equal weighting All indicators receive the same weight. 
Hernández-Uribe et al. 

(2017) 

S
ta

ti
st

ic
a

l

ly
-b

a
se

d
 Principal component 

analysis (PCA) / 

Factor Analysis 

PCA is used for factor extraction. The weights are obtained from the rotated 

factor matrix since the area of each factor represents the proportion of the 

total unit of the variance of the indicators that is explained by the factor. 

Gu et al.(2018) 

Entropy method 
Weights are assigned based on the degree of variation of the indicator 

values. 

Lianxiao and Morimoto 

(2019) 

P
a

rt
ic

ip
a

t

o
ry

 o
r 

ex
p

er
t-

b
a

se
d

 

Expert opinion Experts agree on the contribution of each indicator for the studied problem. Shah et al. (2018) 

Public opinion 
They focus on the notion of people's concern about certain problems 

measured by the indicators. 

Schuster-Wallace et al. 

(2018) 

Multi-criteria decision-

making (MCDM) 

It is a set of methods based on multiple criteria and objectives for 

structuring and evaluating alternatives. 
de Brito et al. (2018) 
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The sixth step consists of sensitivity and uncertainty analyses (see Table 3 for the main uncertainty and sensitivity methods). 

The first evaluates the contribution of the uncertainty source of each indicator to the variance of the results, while the latter 105 

focuses on how the uncertainty of each indicator propagates through the index structure and affects the outputs (Saisana et al., 

2005; Saisana and Tarantola, 2002).  

The final step comprises the validation of the index results. This is crucial to verify if they are consistent with the real system 

and have a satisfactory precision range. Validation can be achieved by using independent secondary data that refer to 

observable outcomes. Since vulnerability is not a directly observable phenomenon, its validation requires the use of proxies 110 

such as mortality and build environment damage (Schneiderbauer and Ehrlich, 2006), post event-surveys (Fekete, 2009), 

number of disasters (Debortoli et al., 2017) and emergency service requests (Kontokosta and Malik, 2018). 

 

Table 3. Characteristics of the main methods for uncertainty and sensitivity analysis used for building indices. 

Method Description Reference 

One-at-a-time 

sensitivity analysis 

By changing input data parameters, it was verified how these disturbances affected 

the results when all the other parameters remained constant. 
de Brito et al. (2019) 

Monte Carlo 

simulation 

Computational algorithm which uses a probabilistic method that uses repeated 

random sampling  

Feizizadeh and Kienberger 

(2017) 

Statistical tools Use of statistical tools such as regression, correlation analysis and cross-validation 
Moreira et al. (2021), 

Nazeer and Bork (2019) 

3 Methods 115 

A bibliographic search was performed by focusing on studies that constructed flood vulnerability indexes. The Web of Science 

(WoS) database was searched using the following keywords to identify peer-reviewed articles published since 1945: ((“flood” 

OR “flooding”) AND (“index” OR “composite indicator”) AND “vulnerability” NOT “coast*”). Only the abstract, title, and 

keywords were searched. This narrowed the search space substantially and enabled us to exclude irrelevant articles. 

These queries elicited over 348 articles published between 2002 and 2019. At first, the title, abstract, and keywords were 120 

screened manually to exclude irrelevant references. After this preselection, the full text of 84 selected papers was revised in 

detail. An additional of 11 articles were included as they were mentioned in the selected articles but are not included in the 

WoS database. 

Following their selection, the articles were classified according to: (1) publication year; (2) study area country; (3) spatial scale 

(e.g. neighborhood, household, city); (4) region classification (e.g. urban, rural or both); (5) number of indicators; (6) whether 125 

or not there was a reduction of the indicators (e.g. PCA or expert knowledge); (7) temporal dynamics (pre or post-flood); (8) 

normalization, aggregation, and weighting methods used; and (9) if there uncertainty and validation analysis were performed. 

A complete list of the reviewed papers is presented in the Supplementary Material Table S1. 
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4 Results and Discussion 

4.1 Flood vulnerability indices at a glance 130 

An increasing number of studies that built flood vulnerability indices can be observed in recent years, with about 80% (n=76) 

of the articles being published since 2015 (Fig. 2a) - the year the Sendai Framework for Disaster Risk Reduction (UNISDR, 

2016) was created. This is not surprising given the strong call for vulnerability assessment in the Sendai Framework. Therefore, 

the growing number of publications may result from the increasing awareness of flood-disasters prevention and reduction 

policies as well as the easiness of using indices to address complex and multidimensional issues such as flood vulnerability. 135 

Alternatively, this increase may just match a general rise in published papers. To investigate this, we calculated the increase 

of flood vulnerability studies in relative terms based on a normalization according to the number of all flood publications in 

the WoS database. Results show that the increase in research on flood vulnerability indices is significantly greater than the 

increase of published flood articles (Appendix A Fig. A1). 

 (a)  140 

(b)  

Fig. 2. Flood vulnerability index studies: (a) Temporal distribution from 2002 to 2019; and (b) Geographical distribution. 

1
0 0 0 0 0 0

3

1
2

3
2

6

11 11

15

21

19

0

5

10

15

20

25

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
u

m
b

er
 o

f 
ar

ti
cl

es

S
en

d
ai

 F
ra

m
ew

o
rk

 

fo
r 

D
R

R
 

https://doi.org/10.5194/nhess-2021-34
Preprint. Discussion started: 29 January 2021
c© Author(s) 2021. CC BY 4.0 License.



7 

 

Overall, most of the assessments were conducted in Asia (45.3%), followed by America (24.2%), encompassing 38 countries 

in total (Fig. 2b). This was expected as, according to the EM-DAT statistics, between 2002 and 2019 Asia showed the highest 

amount of deaths caused by floods (1027 deaths) (CRED, 2019). As such, the studies are highly concentrated in a few countries, 145 

namely China (n=14), Brazil (n=8), India (n=6), Pakistan (n=6), and United States (n=6). Meanwhile, there were fewer studies 

in East and West Africa despite the frequent occurrence of floods and the high mortality they cause across these regions. 

In terms of spatial scale, most of the studies were conducted at the neighborhood scale (62.1%), followed by city (14.7%), 

household (12.6%), group of cities (7.4%), various scales (2.1%), and federal state (1.1%). Similar outcomes were obtained 

by Diaz-Sarachaga and Jato-Espino (2020), which found out that vulnerability studies at national and regional scales are 150 

infrequent. The neighborhood scale was the dominant scale in all continents (Fig. 3) as it is the smallest unit where data is 

available for large areas, generally through census data. Only 8 studies (8.4%) were conducted at the basin level (i.e. group of 

cities) and few articles (n=2) conducted assessments across various scales. For instance, Balica et al. (2009) evaluated the 

vulnerability at the basin, sub-basin, and city scales. Similarly, Remo et al. (2016) compared three scales (i.e. census blocks, 

communities, and counties) and found out that the results generally mirrored each other. None of the considered articles draw 155 

conclusions at the national or global level. 

 

Fig. 3. Classification of papers of flood vulnerability in terms of scale in continents. 

Around 40.0% of the studies were applied to urban areas, 15.8% to rural areas and 44.2% to both. The high prevalence of 

studies that consider both urban and rural areas is related to the data availability, as the census tracks usually encompass the 160 

entire perimeter of a municipality. At the neighborhood scale, most studies considered only urban areas (53.4%) (Fig. 4). 

Conversely, studies at the household scale were developed mainly in in rural areas (58.3%). This can be explained by the lack 

of data in rural areas. Therefore, in these cases, it is necessary to collect data via household surveys.  

 

 -

 5

 10

 15

 20

Asia (n=43) Africa (n=7) America (n=23) Europe (n=19)

Household Neighborhood City Group of cities State Country Various scales
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 165 

Fig. 4. Classification of studies in terms of rural and urban areas and spatial scale. 

4.2 Indicators used to characterize flood vulnerability 

Table 4 shows the most frequent indicators grouped into social, economic, physical and, coping capacity dimensions. In 

summary, social and economic indicators such as population density (37.9%), illiteracy rate (32.6%), unemployment rate 

(29.5%), female rate (28.4%), per capita income (25.3%), and elderly rate (22.1%) were the most commonly-used vulnerability 170 

indicators (Table. 4). This is similar to the results obtained by Rufat et al. (2015), who found out that poverty and deprivation, 

per capita income, unemployment rate, elderly and children were the most common indicators of social vulnerability. 

Nevertheless, widely used indicators found by the authors were not identified or were rarely used in our sample. These include, 

for example, stress and mental health, hygiene and sanitation, social networks, and experience with floods (Schneiderbauer 

and Ehrlich (2006).  175 

 

Table. 4. Most commonly-used flood vulnerability indicators. Only indicators used in at least 4 articles are shown here.  

Dimension Indicator N of articles 

 Social 

Population density 36 (37.9%) 

Illiteracy rate 31 (32.6%) 

Unemployment rate 28 (29.5%) 

Female rate 27 (28.4%) 

Elderly rate 27 (28.4%) 

Education level 23 (24.2%) 

Male rate 11 (11.6%) 

Children rate 11 (11.6%) 

Inhabitants aged 0-15 11 (11.6%) 

Population growth 10 (10.5%) 

Total population 9 (9.5%) 

Persons with disabilities 7 (7.4%) 

Family members 7 (7.4%) 

Single parents with young children 6 (6.3%) 

Household headed by females 6 (6.3%) 

Cultural heritage 5 (5.3%) 

Household member with illness 5 (5.3%) 

Children mortality 5 (5.3%) 

Economic 

Per capita income 24 (25.3%) 

Gross domestic product (GDP) per capita 11 (11.6%) 

Population poor 10 (10.5%) 

16.7%

37.3%

64.3%

100.0%

100.0%

50.0%

25.0%

52.5%

21.4%

50.0%

58.3%

8.5%

14.3%

Household (n=12)

Neighborhood (n=59)

City (n=14)

Group of cities (n=7)

State (n=1)

Various scales (n=2)

Urban and rural Urban Rural
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Rented houses 10 (10.5%) 

Household income 9 (9.5%) 

Dependency rates 9 (9.5%) 

Own vehicle 8 (8.4%) 

Percent of homeownership 5 (5.3%) 

Physical 

Household without sanitation 19 (20.0%) 

Household without safe water 14 (14.7%) 

Building material 14 (14.7%) 

Road network 12 (12.6%) 

Physical conditions of the building 11 (11.6%) 

Building location 9 (9.5%) 

Population in flood area 9 (9.5%) 

Urban area 8 (8.4%) 

Household without electricity 8 (8.4%) 

Number of floors  6 (6.3%) 

Building age 5 (5.3%) 

Building type 5 (5.3%) 

Number of hospitals 5 (5.3%) 

Coping 

capacity 

Early warning system 11 (11.6%) 

Past flood experience 7 (7.4%) 

Emergency committee 5 (5.3%) 

Flood insurance 5 (5.3%) 

 

The studies used a median of 16 indicators. Although 32.6% (n=31) of the studies used more than 20 indicators (e.g. Sam et 

al., 2017), most of them (58.0%) did not apply any method for reducing the number of variables. Among the studies which 180 

conducted reduction, the mostly-used technique was the PCA, which was applied to 35.5% (n=11) of the indices that used 

more than 20 indicators (e.g. Aroca-Jimenez et al., 2017; Grosso et al., 2015; Török, 2018). In addition to PCA, some studies 

used other approaches, for example, based on expert opinion (e.g. de Brito et al., 2018) or based on indicators with a high 

Pearson correlation (e.g. Kotzee and Reyers, 2016). 

4.3 Temporal dynamics 185 

In order to identify if the articles included the temporal dynamics of vulnerability, the indices were classified into: pre-event 

(before), event (during) and post-event (after) Kobiyama et al. (2006). Most of the studies focused on assessing past 

vulnerability trends (88.4%) and only 12.6% explored post-event flood vulnerability (e.g. (Carlier et al., 2018; Miguez and 

Veról, 2017). None focused on the vulnerability during the event or elaborated projections for future vulnerabilities. 

The indicators used differed according to the temporal scale considered. Post-event indices encompassed human, economic 190 

and material damages to quantify the flood vulnerability (Table 5). Variables such as mitigation, damages and coping behavior 

after experiencing a flood were often considered (Abbas et al., 2018). For instance, Rogelis et al. (2016) compared the results 

of the most vulnerable areas by ranking the basins according to the observed impacts from highest to lowest damage in terms 

of: number of fatalities, injured people, evacuated people, and number of affected houses.  

 195 

Table 5. Indicators used for flood vulnerability assessment through post-event approach. 
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Damage 

Type 
Indicator Reference(s) 

Human 

Human deaths Chaliha et al. (2012); Baeck et al. (2014); Abbas et al., (2018) 

Injured family members or human losses Abbas et al. (2018); Ahmad and Afzal (2019) 

People suffering from poor health conditions 

due to floods 

Chaliha et al. (2012), Jamshed et al. (2019) 

Population affected Chaliha et al. (2012) 

Displacement Okazawa et al. (2011) 

Domestic violence after a flood Abbas et al. (2018) 

Left house due to flood Abbas et al. (2018) 

Vulnerability to the dissemination of water 

borne diseases 

Abbas et al. (2018); Miguez and Veról (2017) 

Access to safe water after a flood Jamshed et al. (2019) 

Access to sanitation after a flood Jamshed et al. (2019) 

Degradation of water quality Jamshed et al. (2019) 

Econo-

mic 

Affected villages Chaliha et al. (2012), Jamshed et al. (2019) 

Crop lost value Chaliha et al. (2012) 

Economic loss regarding animal husbandry Ahmad and Afzal (2019) 

House damage value Chaliha et al. (2012) 

Borrowed money Abbas et al. (2018) 

Decrease in food expenditure Abbas et al. (2018) 

Increase in medical cost Abbas et al. (2018) 

Material 

Area affected by flood Chaliha et al. (2012); Carlier et al. (2018); Okazawa et al. (2011) 

Building damage 
Chaliha et al. (2012); Carlier et al. (2018); Bertilsson et al. (2019), 

Jamshed et al. (2019) 

Damages to public utilities Chaliha et al. (2012) 

Number of killed livestock’s Chaliha et al. (2012) 

Crop damage Abbas et al. (2018), Jamshed et al. (2019) 

Damage to house, livestock and, assets Abbas et al. (2018), Jamshed et al. (2019) 

Schools damaged by flood Jamshed et al. (2019) 

 

4.4 Indicator normalization, weighting and aggregation 

Concerning the indicators normalization, the most used approach was Min-Max (30.5%), followed by Z-score (12.6%) and 

Distance from the group leader (12.6%) (Table 6a). Five studies applied other methods. For example, Aroca-Jimenez et al. 200 

(2017; 2018) expressed the indicators’ values in percentage or per capita value, and de Brito et al. (2018) used fuzzy functions 

to normalize the indicators. It is important to note that most papers did not specify the normalization method used (11.6%), 

which limits the index reliability. 

Among the weighing approach types, statistical methods were the most applied (30.5%), especially the PCA method (21.1%). 

The high use of PCA can be attributed to the pioneering work by Cutter et al. (2003), which recommended the use of a factor 205 

analytic approach. Other less common statistical methods include dividing the indicator values by the total or maximum value 

(e.g. (Okazawa et al., 2011), hot spot analysis (e.g. (Kubal et al., 2009) and the unequal weighting method (e.g. (Kablan et al., 

2017).  

Many authors recommend the use of participatory methods for weighing the indicators such as the use of multicriteria decision-

making (MCDM) tools. It is assumed that, if practitioners and experts are involved in creating an index that they find useful, 210 
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it is more likely they will trust its results (Oulahen et al., 2015). In the present study, AHP was the most common MCDM 

technique, which corroborates the results by de Brito and Evers (2016). These authors attributed this preference to the fact that 

AHP is a straightforward and flexible method. This method was applied separately in 10 papers and together with other 

methods in 5 papers, totaling 16.0% of the reviewed articles. Among the less common MCDM methods, Promethee (Daksiya 

et al., 2017) and ANP (de Brito et al., 2018) techniques are worth mentioning.  215 

 

Table 6 (a) Normalization methods; and (b) weighting methods. 

a   

Normalization Method N % 

Min-Max 29 30.5 

Z-score 12 12.6 

Distance from the group 

leader 
12 12.6 

Unspecified 11 11.6 

None (All indicators had 

the same unit) 
11 11.6 

Ranking 7 7.4 

Categorical scale 3 3.2 

Binary standard 3 3.2 

Division by total 2 2.1 

Others 5 5.3 

 95 100 
 

b    

Type Weighting Method N % 

Statistically-based 

methods 

PCA – weighting by factor scores 17 17.9 

PCA – equal weighting 3 3.2 

Entropy method 1 1.1 

Other statistical methods 8 8.5 

Participatory or 

expert-based 

methods 

Analytical Hierarchy Process  10 10.5 

Public opinion 6 6.3 

Expert opinion 2 2.1 

Other MCDM techniques 3 4.2 

Others 

Equal weighting 23 24.2 

Other methods 7 7.4 

Defined by the authors 8 8.4 

Unspecified 6 6.3 

  95 100 
 

 

A total of 7 articles used other weighting methods, including the entropy method (Lianxiao and Morimoto, 2019), Delphi 

technique (Yang et al., 2018b); and expert scoring (Wu et al., 2015). Furthermore, about one-fourth (24.2%) of the papers 220 

attributed equal weights and 6.3% did not specify the weighting method used (Table 6b). Some authors preferred not to weight 

indicators because they assumed that these indicators are equally important for vulnerability calculation (Yoon, 2012), whereas 

others pointed out that there is insufficient evidence to attribute importance to one factor over another (Fekete, 2011). 

In terms of aggregation, the majority of the articles (80.0%) used linear aggregation, followed by geometric aggregation 

(10.5%) and mixed methods (4.2%). The linear method is useful when all indicators have the same unit or after they are 225 

normalized. The geometric aggregation is preferred when the interest is to assess the degree of non-compensation between the 

indicators. In linear aggregation, compensation is constant, while in geometric aggregation the compensation is lower for 

indices with low values (Nardo et al., 2008). Nevertheless, the geometric method has a limitation when indicators with very 

low scores are compensated by indicators with high scores (Gan et al., 2017). 
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It is important to mention other aggregation methods used (5.3%). For instance, Abebe et al. (2018) used the Bayesian Belief 230 

Network (BBN), which is formed by a graphical network representing the cause-effect relationships between the different 

indicators (Pearl, 1988). Yang et al. (2018a) applied the Shannon entropy method. In a similar study, Yang et al. (2018b) used 

the Shannon entropy method to calculate the indicators´ inhomogeneity. More recently, Amadio et al. (2019) used a non-

compensatory aggregation method to compensate the low performance of one indicator by some higher performance of another 

indicator. Finally, Chiu et al. (2014) used the Fuzzy Comprehensive Evaluation Method (FCEM) to aggregate the indicators. 235 

4.5 Uncertainty, sensitivity and validation 

Each step of the construction of flood vulnerability indices carries uncertainty (Saisana et al., 2005)., which is added to the 

ones associated with the randomness of flood events (Merz et al., 2008). Therefore, to ensure a better index quality and verify 

the results’ robustness, uncertainty analysis should be conducted. Despite its importance, only 3 (3.2%) of the reviewed papers 

performed uncertainty analysis: Nazeer and Bork (2019) observed variations in the final results changing input variables; 240 

Feizizadeh and Kienberger (2017) and Guo et al. (2014) applied Monte Carlo simulation and set pair analysis, respectively. 

With respect to sensitivity analysis (SA), only 9 papers (9.5%) performed it. Most articles applied local SA by comparing the 

results obtained by changing input methods, such as choosing different weights (Müller et al., 2011; Nazeer and Bork, 2019; 

Rogelis et al., 2016), aggregation methods (Fernandez et al., 2016; Nazeer and Bork, 2019) or indicators (Rogelis et al., 2016; 

Zhang and You, 2014). In turn, Abebe et al. (2018) quantified sensitivity through variance reduction and mutual information. 245 

de Brito et al. (2019) performed spatial SA by computing the vulnerability class switches when the indicator weights were 

changed. Only Feizizadeh and Kienberger (2017) performed the global sensitivity analysis (GSA).  

Although the number of flood vulnerability studies has increased, few studies attempted to validate the obtained outcomes 

(Fekete, 2009). Of the reviewed articles, only 11 (11.6%) validated the results, mostly using maps with flooded areas (n=7), 

flood damage (n=3), and expert’s opinion (n=1).  250 

5 Persisting gaps and future research 

Despite the increasing number of research on flood vulnerability indices since 2015, a series of persistent knowledge gaps of 

methodological nature were found in our systematic review. Here, we summarize these gaps and provide a research agenda 

with needs that should be addressed in future research. 

The first challenge refers to the spatial scale as vulnerability is not only site-specific but also scale-dependent (Ciurean et al., 255 

2013). The choice of the spatial scale in the reviewed articles was mostly driven by data availability and hence most of them 

were applied at the neighborhood level using census tracks. There were no studies at the national level and only 8 papers 

(8.4%) constructed vulnerability indices using data at the basin scale. Nevertheless, these scales are often used for flood risk 

management and are necessary to enable the comparability of regions and to define hot-spot areas where intervention is needed 

(Balica et al., 2009; Fekete et al., 2010). Conversely, studies at the household level were also rare in our sample (n=12). Yet, 260 
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aspects related to the citizens’ coping capacities can only be captured at this spatial scale. An additional issue is the problem 

of down- or up-scaling that implies different levels of generalization. Hence, multi-level and cross-scale studies are needed. 

They allow for a better understanding of scale implications, including their benefits and drawbacks. A better understanding of 

the linkages between urban-rural linkages is also needed instead of studying it in isolation. To this end, the framework proposed 

by Jamshed et al. (2020) could be used. 265 

A second gap is that indicators related to the populations’ coping and adaptive capacity were rarely used. A focus was given 

to social indicators that increase people´s vulnerability. Similar to the scale issue, this preference is driven due to data 

availability issues as social indicators (e.g. age, gender) are easily accessible. Nevertheless, the capacity of people to anticipate, 

cope with, resist and recover from disasters is equally important to understand the risk. In fact, even poor and vulnerable people 

have capacities (Wisner et al., 2012). Therefore, when dealing with flood vulnerability, other relevant indicators such as risk 270 

perception (Carlier et al., 2018), past flood experience (Beringer and Kaewsuk, 2018). These indicators require local research, 

which demands time and financial resources. Indeed, information on citizens’ adaptive behavior and perception requires 

longitudinal or quasi-experimental studies that allow to capturing behavioral dynamics over time (Kuhlicke et al., 2020). As 

an alternative, people’s risk perception could be derived from widely available data sources, including, for instance, Google 

trends (e.g. Kam et al, (2019) and twitter statistics (Dyer and Kolic, 2020).    275 

Still with regard to the indicators used, many of the studies used variables that overlap with each other. In this context, some 

indices used more than 20 indicators to measure flood vulnerability and did not apply any technique (e.g. PCA, expert-based) 

to reduce this number. This can decrease the explanatory power of the index. A further issue is that the reasoning for variable 

selection was often not given or it was justified based on previous studies, without taking into consideration the study area 

specificities or conceptual frameworks. Due to the difficulty and time involved in developing indicators, low-quality databases 280 

are normally used (Freudenberg, 2003). For adequate indicators’ selection, the analytical soundness, measurability, relevance 

to the phenomenon being measured and the relationship to each other (e.g. interrelationships and feedback loops) should be 

taken into account. Furthermore, more theoretically grounded research is needed to generate robust evidence for selecting the 

input indicators. 

All of the vulnerability indices reviewed here are static and represent a snapshot of vulnerability. Hence, they do not capture 285 

the complexities and temporal dynamics of vulnerability. Few studies focused on measuring flood vulnerability pos-event. 

Nevertheless, the drivers of vulnerability can vary considerably over time. Results by Kuhlicke et al. (2011) and Reiter et al. 

(2018) show that the exposed citizens (e.g. elderly and children) may be less vulnerable during the preparatory phase of a flood 

but highly vulnerable during the recovery phase. Hence, incorporating the phase of the flood disaster is key to improving the 

validity of vulnerability indices (Rufat et al., 2015). To account for temporal context, the indicator can be differentiated 290 

according to different phases of a flood disaster: preparedness, response and recovery phases. Such a phase-oriented approach 

could inform variable selection and weighting. In addition to this, there is a need for research looking into future vulnerabilities 

as preventive planning for FRR requires a forward-looking perspective  (Birkmann et al., 2013; Garschagen and Kraas, 2010). 
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These could make use of, for instance, population growth projections or by employing qualitative futuring techniques 

(Hoffman et al., 2021).   295 

Similar to the selection of the indicators, several articles did not indicate why a specific normalization and weighting technique 

was chosen. Additionality, some did not explicitly specify any normalization (11.6%) or weighting (6.3%) method. 

Nevertheless, the use of arbitrary techniques without testing different methods and their assumptions, increases the subjective 

judgement error. Hence, it is imperative for further studies to be more rigorous and present the reasoning behind such choices. 

Furthermore, there was an over-reliance on the use of the AHP weighting method and studies comparing different 300 

normalization and weighting techniques were rare (7.4%). Future research should tackle this by exploring different alternatives 

for evaluating indicator weights (e.g. expert-based, MCDM, statistical approaches) and compare the findings by means of 

validation and sensitivity analyses.  

A final persisting gap is that few vulnerability indices conducted any sort of validation, sensitivity and uncertainty analysis. 

Less than 14% of the studies have conducted any form of validation of their results using impact data (e.g. Rezende et al. 305 

(2019) and only 9.5% have conducted a statistical sensitivity or uncertainty analysis. The lack of these analyzes results in 

vulnerability outputs incoherent with the local reality, being able to over or underestimate the vulnerability spatially, which 

difficult decision-makers to reduce flood vulnerability. Fekete (2009) points out several difficulties in this process, such as the 

difficulty of finding empirical evidence about vulnerability; the vulnerability concept is holistic and generic with complex 

relationships, as well as being multidimensional; and vulnerability is difficult to estimate for methodological reasons. Further 310 

research is needed on the validation of vulnerability outcomes (including technical and user validation) and analysis of the 

sensitivity of the contribution of individual indicators to the obtained results. These findings are in line with the gaps identified 

by Hagenlocher et al. (2019), de Brito and Evers (2016) and Moreira et al. (2021).  

6 Conclusions 

The present study reviewed 95 articles from 38 countries that constructed flood vulnerability indices. In summary, despite the 315 

increasing number of studies and advances made, the review has revealed and re-confirmed a number of persistent knowledge 

gaps. Only 11.6% of studies focused on indicators that address post-event conditions related to flood damage and consequences 

and none of them investigated future vulnerabilities. Coping and adaptive capacity aspects were frequently ignored. Most did 

not apply sensitivity (90.5%) and uncertainty analyses (96.8%) nor performed results validation (86.3%). This demonstrates a 

limitation of the reliability of these indices. It is clear from the literature that the challenge for further research is to foster the 320 

development of dynamic vulnerability assessments that consider citizens´ coping capacities and take the uncertainty involved 

in all steps of the index building process into account, including the selection of indicators, normalization, weighting, and 

aggregation. This is required in order to advance our understanding of flood vulnerability and support pathways towards flood 

risk reduction. 

 325 
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Appendices 

APPENDIX A 

 
Fig. A1 Normalized number of flood vulnerability indices and flood articles according to the Web of Science 

database. For the Flood articles search, the keyword “flood*” was used. 330 
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